Note

THERMODYNAMICS OF THE CHLORIDES, BROMIDES, NITRATES, BROMATES, IODATES AND SULPHATES OF POTASSIUM AND SODIUM IN DIOXANE—WATER MIXTURES FROM CONDUCTANCE DATA AT DIFFERENT TEMPERATURES

N.C. DAS, P.P. MISRA and P.B. DAS

Department of Chemistry, Ravenshaw College, Cuttack 753003 (India)

(Received 13 November 1979)

Studies on electrolytic conductance in dioxane-water mixtures of varying compositions at 30, 35, 40 and 45°C were initiated, in which the variations in the Walden product with solvent composition and temperature were reported and discussed with respect to theories concerning solvent structure and ion-solvent interactions. In the present communication, attempts have been made to evaluate the thermodynamic function (ΔG_t^c) for the transfer of KCl, KBr, KNO₃, KBrO₃, KIO₃, K₂SO₄, NaCl, NaBr, NaNO₃, NaBrO₃, NaIO₃ and Na₂SO₄ from water to respective dioxane + water media, which would give some information regarding ionic solvation.

MATERIALS AND METHODS

The salts and dioxane used were of E. Merck "Extra pure" varieties. Purification of dioxane, preparation of solvents, solutions and measurements have been reported previously [1]. The conductance measurement was of an accuracy of ± 2 in 1000. The concentration range was 0.01-0.001 mole 1^{-1} for uniunivalent salts and 0.02-0.002 mole 1^{-1} for K₂SO₄ and Na₂SO₄.

RESULTS AND DISCUSSION

The plot of Λ vs. $C^{1/2}$ was found to be linear and Λ^0 has been obtained from the extrapolated values at zero concentration. The Walden product is almost constant at all temperatures and at all solvent compositions. This constancy is presumably due to the contribution of the positive temperature coefficient of the conductivity with the negative temperature coefficient of the viscosity of the solvent. Hence, it is extremely difficult to predict the breaking and promoting structure of the solvent within the temperature range studied (i.e., 30-45°C).

Since the dielectric constant of the medium is low, the dissocation constant K has been calculated by the method of Fuoss and Krauss [2] and also by the method of Shedlovsky [3], both methods giving the same results. The K values for K_2SO_4 and Na_2SO_4 have been calculated from Davies' method [4]. The ΔG^0 values have been calculated and the plot of ΔG^0 vs. mass fraction of dioxane was found to be linear. The extrapolated values gave ΔG^0 for

TABLE 1

Free energy transfer of salts from water to dioxane + water mixtures at different temperatures $[\Delta G_t^0 (J \text{ mole}^{-1})]$

Salt	Temp. (°C)	ΔG :			Salt	Temp.	ΔG:	Δ <i>G</i> :			
		16% diox- ane	20% diox- ane	30% diox- ane		()	10% diox- ane	20% diox- ane	30% diox- ane		
KCl	30 35 40 45	524 513 622 782	1072 1014 1498 1594	1443 1614 1772 2101	NaCl	30 35 40 45	614 743 749 1211	1313 1723 2074 2019	2073 2373 2618 3181		
KBr	30 35 40 45	513 504 901 918	1013 1123 1248 1582	1445 1505 1863 2083	NaBr	30 35 40 45	442 552 1030 808	832 871 1109 1672	1414 1681 2083 2287		
KNO3	30 35 40 45	563 608 978 972	1103 1162 1680 1672	1467 1673 1864 2113	NaNO3	30 35 40 45	446 504 702 903	900 952 1455 1507	1403 1573 2099 2309		
KBrO3	30 35 40 45	1012 1113 1265 1313	2012 2313 2756 2754	3043 3443 3354 3603	NaBrO3	30 35 40 45	541 591 702 623	923 1144 1455 1622	1461 1611 2099 2229		
KIO3	30 35 40 45	612 714 1080 1016	1152 1215 1356 1646	1853 1954 2134 2754	NaIO3	30 35 40 45	807 808 954 1318	1178 1228 1577 2178	1868 2114 2417 3467		
K₂SO₄	30 35 4C 45	-1560 -2080 -2820 -1450	-2670 -3450 -4250 -3080	-4150 -5190 -6060 -5260	Na2SO4	30 35 40 45	-1480 -1760 -1860 -2210	2670 2860 3060 3710	-4660 -4950 -4350 5810		

water. The standard thermodynamic quantities (ΔG_t^0) for the transfer process (from water to 10, 20 and 30% dioxane + water mixtures) were calculated by Feakins' method [5], and are tabulated in Table 1. The probable uncertainty in ΔG_t^0 is ±15 J mole⁻¹.

The ΔG_t^0 values are seen to be positive at all solvent compositions and at all temperatures for the uniunivalent salts, whereas they are negative for $K_2 SO_4$ and Na_2SO_4 . The positive values indicate that the uniunivalent salts are in a higher free energy state in dioxane + water mixtures than in water, so suggesting that water has more affirity for the salts than for dioxane + water mixtures, whereas the reverse occurs in the case of unibivalent salts, i.e. K_2SO_4 and Na_2SO_4 .

The plot of ΔG_t^0 vs. r_{-1}^{-1} for KCl, KBr and KNO₃ in dioxane + water mixtures is found to be linear. Knowing the ΔG_t^0 values of the salts KBrO₃, KIO₃ and K₂SO₄, the ionic radii of BrO₃, IO₃ and SO₄²⁻ could be estimated. Utilising these values ΔG_t^0 has been divided into two parts according to Roy et al. [6]:

(1) an electrostatic part, $\Delta G_{t(el)}^{0}$, corresponding to a change in the dielectric constant of the medium, and

(2) a nonelectrostatic part or chemical contribution, $\Delta G_{t(Ch)}^{o}$, arising from the specific chemical interactions between the ions and the solvent, and therefore solvent dependent.

 $\Delta G_{t(el)}^{0}$ has been calculated from the Born equation [7] utilising the values of ionic radii; the results obtained are given in Table 2. $\Delta G_{t(Ch)}^{0}$ was then evaluated; the values are recorded in Table 3. It is evident that the $\Delta G_{t(Ch)}^{0}$ values are negative in all cases except KBrO₃, which indicates that the transfer of salts from water to dioxane + water is favoured as far as chemical interaction is concerned (except KBrO₃). $\Delta G_{t(el)}^{0}$ is positive in all cases and is of the order $Cl^{-} > Br^{-} > NO_{3}^{-} > BrO_{3}^{-} > IO_{3}^{-} > SO_{4}^{2-}$. As far as ion solvent

TABLE 2

Electrical part of ΔG_t^0 accompanying the transfer of salts from water to dioxane + water mixtures $[\Delta G_{t(el)}^0 (J \text{ mole}^{-1})]$

Salt	Temp.	Electric	Electrical part of ΔG_{t}^{0}			Temp.	Electrical part of $\Delta G_{\rm t}^0$		
	(0)	10% diox- ane	20% diox- ane	30% diox- ane		(0)	10% diox- ane	20% diox- ane	30% diox- ane
KCI	30 35 40 45	1022 787 939 662	1764 1642 1806 1616	2916 2810 3004 2832	NaCl	30 35 40 45	1260 970 1157 815	2173 2024 2225 1991	3593 3461 3704 3489
KBr	30 35 40 45	992 763 911 642	1711 1593 1792 1567	2829 2725 2914 2748	NaBr	30 35 40 45	1228 945 1127 794	2115 1972 2168 1940	3501 3373 3606 3400
KNO3	30 35 40 45	935 744 888 626	1715 1553 1708 1528	2758 2657 2841 2767	NaNO3	30 35 40 45	1211 932 1112 784	2089 1945 2139 2139	3454 3328 3557 3356
KBrO₃	30 35 40 45	904 696 830 577	1560 1452 1597 1428	2578 2484 2656 2504	NaBrO3	30 35 40 45	1446 1113 1328 935	2494 2322 2553 2442	4123 3972 4246 4004
KIO3	30 35 40 45	836 643 768 541	1442 1343 1476 1321	2384 2297 2455 2315	NaIO3	30 35 40 45	1063 818 976 688	1833 1707 1877 1679	3031 2920 3122 2944
K₂SO₄	30 35 40 45	108 114 121 121	235 254 254 273	415 445 464 483	Na ₂ SO ₄	30 35 40 45	266 281 297 297	579 625 657 672	1032 1994 1141 1186

248

Chemical part of ΔG_t^0 accompanying the transfer of salts from water to dioxane + water mixtures $[\Delta G_t^0(Ch) (J \text{ mole}^{-1})]$

Salt	Temp. (°C)	Chemical part of ΔG_t^0			Salt	Temp.	Chemical part of ΔG_t^0		
		10% diox- ane	20% diox- ane	30% diox- ane		(0)	10% diox- ane	20% diox- ane	30% diox- ane
KCI	30 35 40 45	-498 -274 -317 120	$-692 \\ -628 \\ -308 \\ -22$	-1573 -1196 -1230 -731	NaCl	30 35 -10 -15	646 227 408 396	860 291 151 28	-1520 -1088 -1085 -309
KBr	30 35 40 45	$-479 \\ -259 \\ -10 \\ 27$	698 470 504 15	-1384 -1220 -1051 -665	NaBr	30 35 40 45	786 393 97 14	-1286 -1101 -1059 -368	-2087 1692 1523 1118
KNO <u>1</u>	30 35 40 45	-372 -136 90 346	$-612 \\ -371 \\ -28 \\ 144$	-1318 -1291 -977 -314	NaNO ₃	30 35 40 45	-765 -438 -410 119	-1189 993 684 632	-2051 -1755 -1458 -1046
KBrO ₃	30 35 40 45	198 417 435 736	452 961 1159 1296	465 959 1688 1099	NaBrO ₃	30 35 40 45	895 502 636 310	-1551 -1208 -1098 -622	-2662 -2361 -2165 -1775
KIO3	30 35 40 45	-224 71 312 575	$-290 \\ -127 \\ -120 \\ 322$	$-531 \\ -342 \\ -321 \\ -439$	NaIO3	30 35 40 45	-750 -112 -84 224	918 479 193 744	-1103 -806 -705 523
K₂SO₄	30 35 40 45	-1668 -2194 -2941 -1571	-3249 -3485 -3717 -4382	-4569 -5635 -6524 -5743	Na ₂ SO ₄	30 35 40 45	-1746 -2041 -2157 -2507	-3249 -3485 -3717 -4382	5962 60-1-1 5-171 7096

interaction is considered, it is of the order: $SO_3^2 > BrO_3 > IO_3 > Br^2 > NO_3 > Cl^-$ in the case of the Na⁺ salt, whereas it is of the order $SO_3^2 > Cl^- > Br^- > NO_3 > IO_3 > BrO_3$ in the case of the K⁺ salts (Table 3). These differences arise because of the difference in the solvation spheres of Na⁺ and K⁺.

REFERENCES

- 1 N.C. Das, P.P. Misra and P.B. Das, Experentia, 35 (1979) 457.
- 2 R.M. Fuoss and C.A. Krauss, J. Am. Chem. Soc., 33 (1933) 476.
- 3 T. Shedlovsky, J. Franklin Inst., 225 (1938) 439.
- 4 C.W. Davies, J. Chem. Soc., 140 (1938) 2093.
- 5 D. Feakins and D.J. Turner, J. Chem. Soc., (1965) 4786.
- 6 R.N. Roy, W. Vernon and A.L.M. Bothwell, Electrochim. Acta, 17 (1972) 5.
- 7 H.P. Bernets and M.M. Spetzer, J. Chem. Soc., Faraday Trans. 1 (1973) 1492.